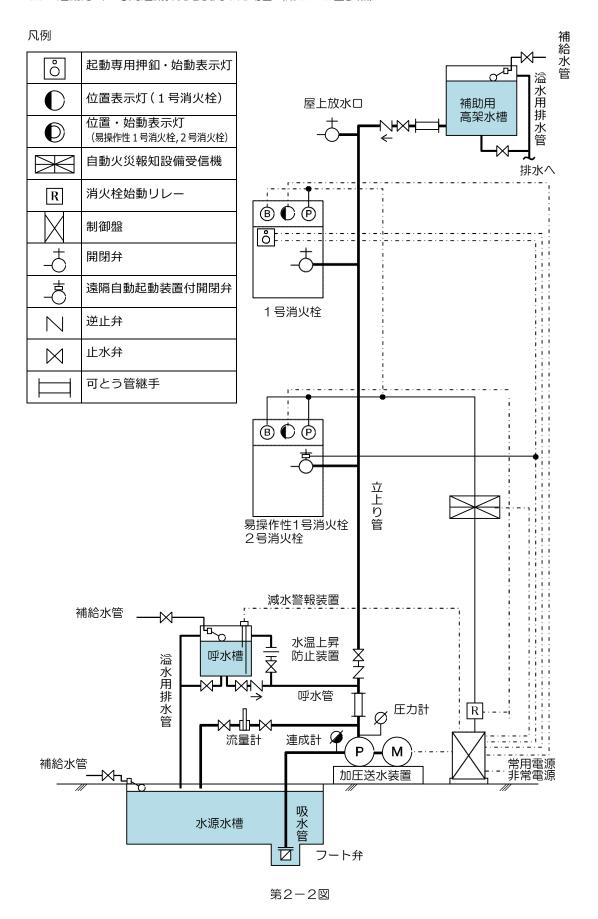

第4章 消防用設備等の技術基準 【第2 屋内消火栓設備】


第2 屋内消火栓設備

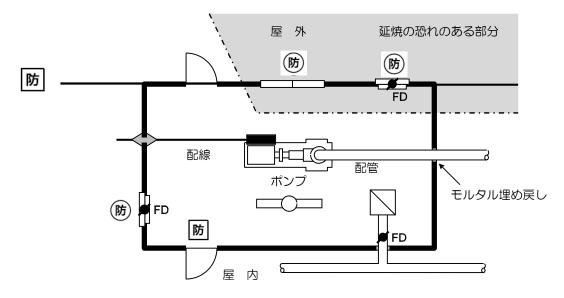
1 主な構造

(1) 起動方式に自動火災報知設備用P型発信機を使用した場合(第2-1図参照)

(2) 起動方式に専用起動押釦を使用した場合(第2-2図参照)

[4-2]2

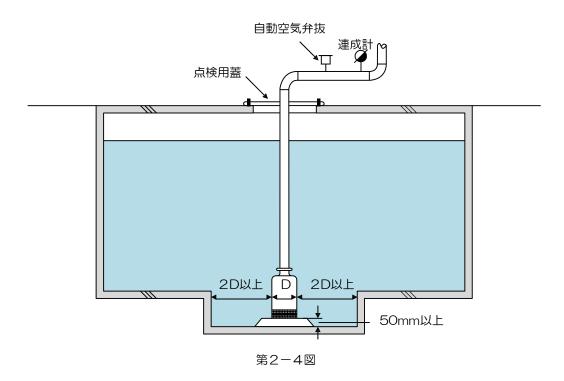
2 加圧送水装置(ポンプを用いるもの)


ポンプを用いる加圧送水装置(以下この項において「ポンプ方式」という。)は、次によること。

(1) 設置場所(第2-3図参照)

- ア 政令第11条第3項第1号ホ、第2号イ(6)及び同号口(6)に規定する「点検に便利な箇所」は、機器の点検ができる空間、照明設備(非常照明を含む。)、排水及び換気設備等が確保できる場所であること。
- イ 政令第11条第3項第1号ホ、第2号イ(6)及び同号口(6)に規定する「火災等の災害による被害を受けるおそれが少ない箇所」は、次によること。(水中ポンプを除く。)
 - (ア) 不燃材料で造られた壁、柱、床及び天井(天井のない場合は、はり及び屋根)で区画(以下この項において「不燃区画」という。)された専用の室に設けること。

ただし、不燃区画された機械室(空調設備等の不燃性の機器又は炉、ボイラー等の火気使用 設備以外の衛生設備等を設ける機械室に限る。)は、この限りでない。


- (イ) 屋内に面する窓及び出入口は、常時閉鎖式防火戸とすること。
- (ウ) 屋内に面する換気口(ガラリ等)に、防火設備が設けられていること。
- (工) 給水管、配電管その他の管が、不燃区画の壁若しくは床を貫通する場合においては、当該管と不燃区画とのすき間をモルタルその他の不燃材料で埋めること。
- (オ) 換気、暖房又は冷房の設備の風道が、不燃区画の壁若しくは床を貫通する場合は、当該貫通する部分又はこれに近接する部分に、防火ダンパーを設けること。
- (カ) 屋外に面する開口部に、防火設備が設けられていること。 ただし、1階に設置され、建基法第2条第6号に規定する延焼のおそれのある部分以外の部分は、この限りでない。

	不燃材料	→	区画貫通措置部材
防	防火設備	≠ _{FD}	防火ダンパー
防	常時閉鎖式防火戸		ガラリ
	照明		制気口

第2-3図

- ウ 水中ポンプを設ける場合(第2-4図参照)
 - (ア) 水中ポンプの水中部は、点検、整備が容易に行えるように、水槽の蓋の真下に設けるほか、引き上げ用のフック等を設けること。
 - (イ) 吸込みストレーナーは、水槽底部から50mm以上で、かつ、水槽壁面からポンプ側面までの 距離は吸込みストレーナー又はポンプ外径の2倍以上となるように設けること。
 - (ウ) ポンプ吐出口から仕切弁までの配管の最頂部に自動空気抜弁を設けること。

エ 制御盤の設置場所は、ポンプ直近で、かつ、種別ごとに第2-1表により設置すること。

第2-1表

制御盤の区分	設 置
第1種制御盤	特に制限なし
第2種制御盤	不燃区画された室
その他	不燃区画された室(電気室、機械室、中央管理室、ポンプ専用室 その他これらに類する室に限る。)

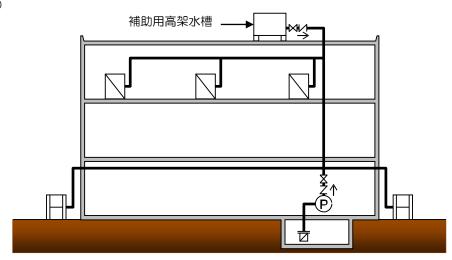
(2) 機器

省令第12条第1項第7号二の規定よるほか、次によること。

- アポンプは、認定品とすること。
- イ 中継ポンプを用いる場合は、押し込み圧力を考慮したものとすること。
- ウ 附属装置等の変更
 - (ア) 認定品の加圧送水装置を設置する際に、設置場所の位置、構造及び状況により、次の変更を 行う場合には、告示適合品として扱えることができる。
 - a ポンプの設置位置が水源より低い場合における水温上昇防止用逃し配管の位置の変更(ただし、流水量に著しい影響を及ぼさないこと。)
 - b 立上り管の頂部位置が当該加圧送水装置より低い場合におけるポンプ吐出側圧力計の連 成計への変更
 - c 水源水位がポンプより高い場合のフート弁の変更

- d 非常電源による加圧送水装置の起動制御を行う場合における制御盤のポンプ起動リレー の変更
- e 排水場所に合わせた場合の流量試験配管の向きの変更(ただし、流水量に著しい影響を及ぼさないこと。)
- f 圧力調整弁等を設ける場合のポンプ吐出側配管部の変更
- g 耐圧の高性能化をはかる場合のポンプ吐出側止水弁及び逆止弁の変更
- (イ) 設置後の改修等におけるポンプ、電動機、附属装置等の交換は、同一仕様又は同一性能のものを設けること。

(3) 設置方法


ア ポンプの併用又は兼用

省令第12条第1項第7号ハ(二)ただし書きの規定による他の消火設備とポンプの併用又は兼用する場合の「それぞれの消火設備の性能に支障を生じないもの」は、次により取り扱うこと。

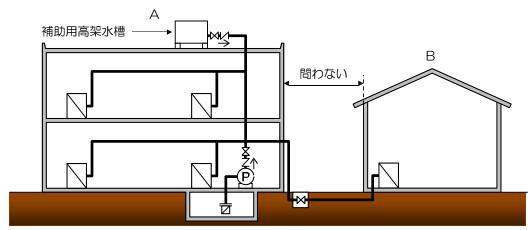
(ア) 同一防火対象物

各消火設備の規定吐出量を加算して得た量以上の量とすること。(第2-5図参照) また、ポンプが一の消火設備として起動した際に、他の消火設備が作動する等の誤作動がない こと。

(例1)

:屋内消火栓(易操作性1号)

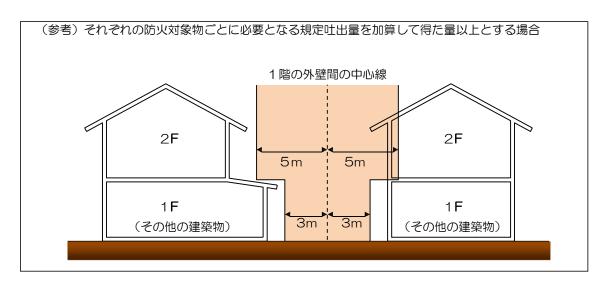
| : 屋外消火栓


消防用設備等	ポンプの能力	設置個数	吐出量
屋内消火栓設備	150ℓ∕min	2個(3個)	300ℓ/min
屋外消火栓設備	ýy栓設備 400ℓ/min 2個		800ℓ/min
ポ	1,100ℓ/min		

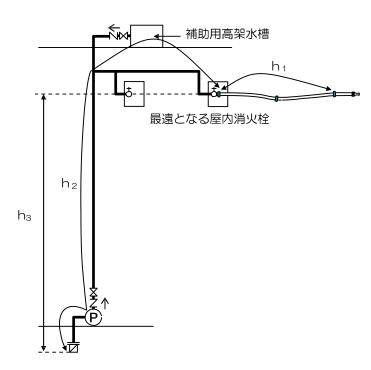
ポンプの吐出量は、1,100 l/min以上とすること。

第2-5図

- (イ) 棟が異なる防火対象物(同一敷地内で、管理権原が同一の場合に限る。) それぞれの防火対象物ごとに必要となる規定吐出量を加算して得た量以上とすること。 ただし、次のいずれかに該当する防火対象物にあっては、当該防火対象物のうち規定吐出量 が最大となる量以上の量とすることができる。
 - a 隣接する防火対象物のいずれかが耐火建築物又は準耐火建築物であるもの (第2-6図参照)
 - b 防火対象物相互の1階の外壁間の中心線から水平距離が1階にあっては3m以上、2階以上にあっては5m以上の距離を有するもの


(例2)

:屋内消火栓(易操作性1号)


防火対象物	構造	規定吐出量
А	準耐火建築物	300ℓ/min
В	その他の建築物	150 ℓ / min

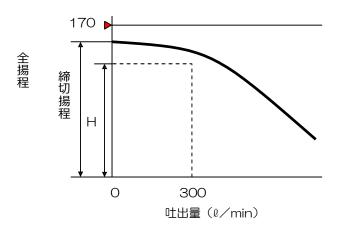
ポンプの吐出量は、300l /min以上とすることができる。 第2-6図

イ 高層建築物等

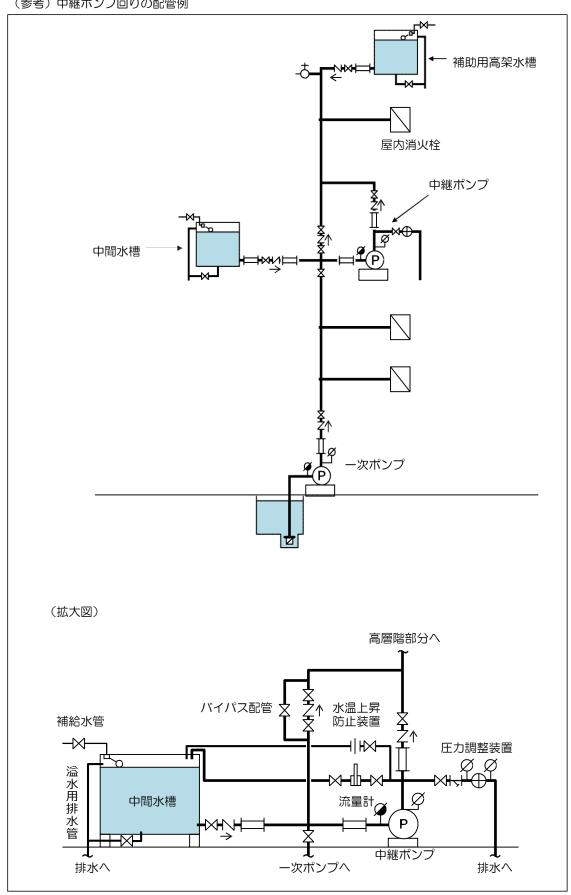
高層建築物等において、ポンプの締切揚程(一次圧力調整弁を設けるものはその設定圧力水頭)が170m以上となる場合にあっては、中継ポンプ等を設け直列運転とすること。(第2-7図参照)この場合、一次ポンプの定格全揚程は、中継ポンプの位置において、中継ポンプの定格吐出量時に10m以上の圧力水頭を保有すること。

ポンプの全揚程は、次の式により求めた値以上の値(1号消火栓の場合)

 $H = h_1 + h_2 + h_3 + 17$

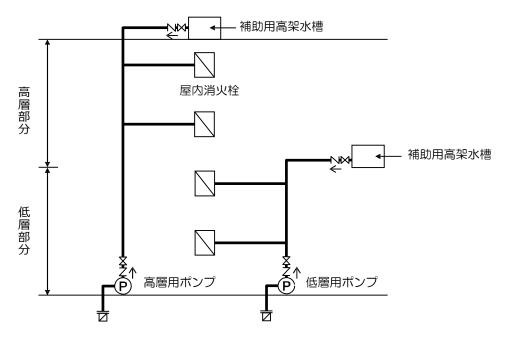

H : ポンプの全揚程(m)

h₁ :消防用ホースの摩擦損失水頭(m)

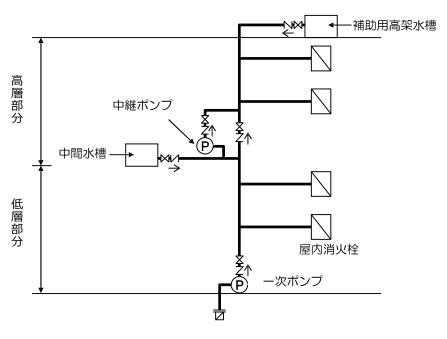

h₂ :配管の摩擦損失水頭(m)

h₃ :落差(m)

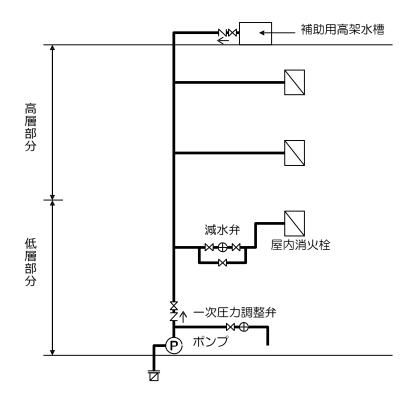
ポンプ揚程曲線図


ポンプの締切揚程が170m以上となる場合は、中継ポンプ等を設け直列運転とすること。

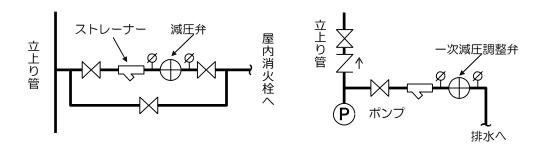
(4) 放水圧力がO.7 MPaを超えないための措置


省令第12条第1項第7号ホに規定する「放水圧力がO.7MPaを超えないための措置」は、次によること。

ア ポンプ揚程を考慮し、配管を別系統にする方法(第2-8図参照)


第2-8図

イ 中継ポンプを設ける方法(第2-9図参照)



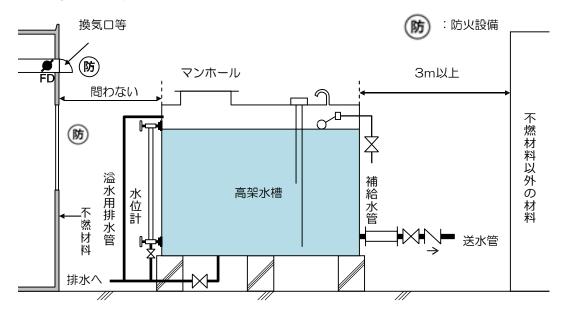
第2-9図

- ウ 減圧機構付の消火栓開閉弁を使用する方法
- エ 減圧弁(一次圧力調整弁を含む。以下この項において「減圧弁等」という。)を使用する設置方法等は、次によること。(第2-10図参照)
 - (ア) 減圧弁等は、消防防災用設備機器性能評定委員会((財)日本消防設備安全センターに設置)において性能評定されたものとすること。
 - (イ) 減圧弁等は、減圧措置のための専用の弁とすること。
 - (ウ) 減圧弁等の接続口径は、取付け部分の管口径と同等以上のものであること。
 - (工) 設置位置は、消火栓開閉弁等の直近の枝管ごとに、点検に便利な位置とすること。
 - (才) 減圧弁等には、その直近の見やすい箇所に当該設備の減圧弁である旨を表示した標識を設けること。

(減圧弁) (一次圧力調整弁)

第2-10図

2の2 加圧送水装置(高架水槽を用いるもの)


高架水槽を用いる加圧送水装置(以下この項において「高架水槽方式」という)は、次によること。

(1) 設置場所

- ア 政令第11条第3項第1号ホ、第2号イ(6)及び同号ロ(6)に規定する「点検に便利な箇所」は、前2(1)アの例による場所であること。
- イ 政令第11条第3項第1号ホ及び第2号ロ(6)に規定する「火災等の災害による被害を受けるおそれが少ない箇所」は、次によること。
 - (ア) 前2(1)イの例による場所であること。
 - (イ) 外気に面する屋上等にあっては、高架水槽面から当該建築物の外壁等及び隣接建築物の外壁 までの水平距離が3m以上離れている場合には、前2(1)イの例による場所としないことがで きる

ただし、外壁が不燃材料で、かつ、開口部に防火設備が設けられている場合は、この限りではない。(第2-11図参照)

(屋上等に設ける場合)

第2-11図

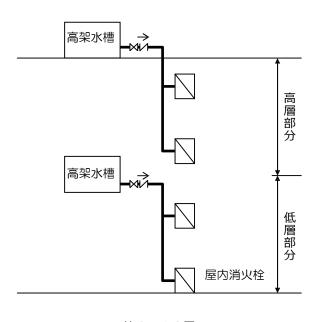
(2) 機器

省令第12条第1項第7号イ(ロ)の規定によるほか、原則として高架水槽の材質は、鋼板又はこれと同等以上の強度、耐食性及び耐熱性を有するものであること。

なお、次の場合には、ガラス繊維強化ポリエステル製等のもの(以下この項において「FRP製」という。)にすることができる。

- ア 前2(1)イの例による場所に設ける場合
- イ 次のすべてに適合する外気に面する屋上等の場所に設ける場合
 - (ア) 高架水槽面から当該建物の外壁等及び隣接建物の外壁までの水平距離が5m以上離れていること。

ただし、外壁が不燃材料で、かつ、開口部に防火設備が設けられている場合は、この限りではない。


(イ) 周囲に可燃物等がないこと。

(3) 設置方法

- ア 高架水槽は、政令第11条第3項第1号ハ、第2号イ(4)又は同号口(4)に規定する性能が得られるように設けること。
- イ 他の消火設備と高架水槽を併用又は兼用する場合は、前2(3)アの例によること。

(4) 放水圧力がO.7MPaを超えないための措置

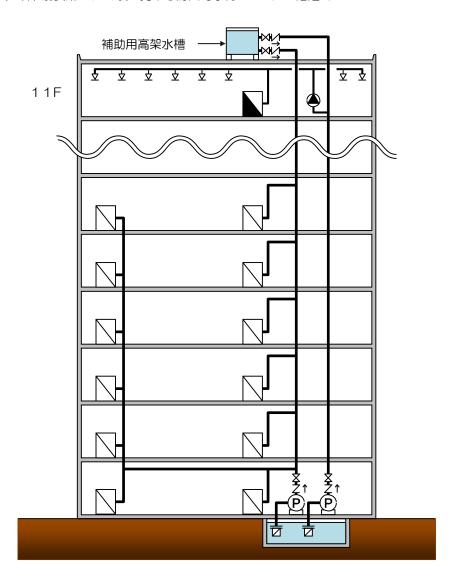
省令第12条第1項第7号ホに規定する「放水圧力がO.7MPaを超えないための措置」は、前2(4)ウ及びエの例によるほか、高架水槽の設置高さを考慮して設ける方法とすること。 (第2-12図参照)

第2-12図

3 水源

水源は、政令第11条第3項第1号ハ、第2号イ(4)又は同号口(4)の規定によるほか、次によること。

(1) 水源の原水


- ア 水源の水質は、原則として原水を上水道水とし、消火設備の機器、配管、バルブ等に影響を与え えないものであること。
- イ 空調用の冷温水を蓄えるために水槽(以下この項において「空調用蓄熱槽」という。)に蓄えられている水の水源の原水は、次による場合に消火設備の水源の原水に使用できるものであること。
 - (ア) 消火設備の水源として必要な水量が常時確保されていること。
 - (イ) 水温はおおむね40℃以下で、水質は原水を上水道水としたものであること。
 - (ウ) 空調用蓄熱槽からの採水により、当該空調用蓄熱槽に係る空調設備の機能に影響を及ぼさないようにするための措置が講じられていること。

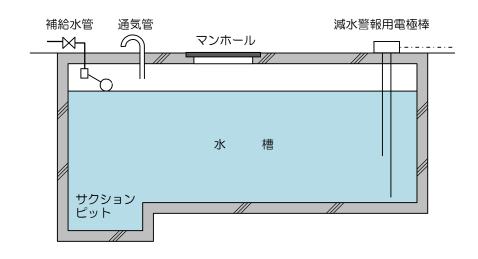
(2) 水源水量

ア 他の消防用設備等と併用する場合の水源水量は、各消防用設備等に必要な規定水量が確保できるように、それぞれの規定水量を加算して得た量以上とすること。(第2-13図参照)

なお、消防用水(防火水槽を含む。)とは、屋内消火栓設備と水源の使用方法が異なることなどから併用をしないこと。

(例3) 政令別表第1(15)項に掲げる防火対象物 11/0階建て

:屋内消火栓(易操作性1号)

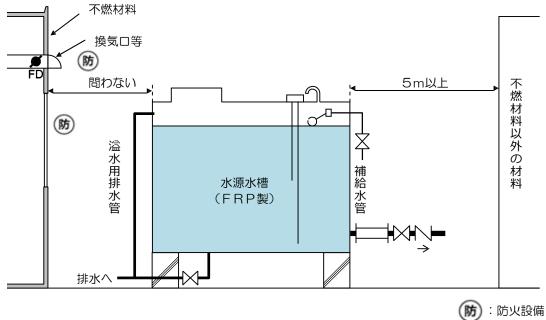

:補助散水栓

消防用設備等	算 出 個 数	容量		
屋内消火栓設備	2個×2.6㎡	5.2 m³		
スプリンクラー設備	スプリンクラー設備 高感度ヘッド 12 個×1.6㎡			
水	源容量	24.4 m³		

水源水量は、24.4㎡ 以上とすること。

第2-13図

- イ 水源には減水した場合、自動的に給水できる装置又は9表示及び警報の例により、警報を発する 装置を設けること。(第2-14図参照)
- ウ 水源は、常時有効水量を貯えることができ、かつ、規定水量が連続して取水できるものとすること。

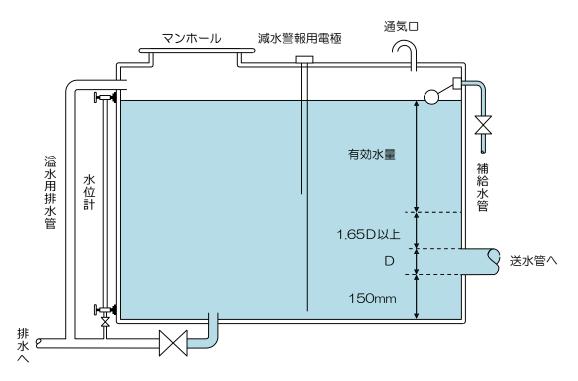

第2-14図

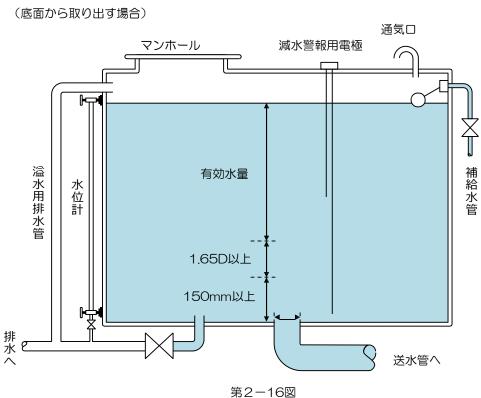
(3) 水源水槽の構造

高架水槽方式及び圧力水槽を用いる加圧送水装置の水源水槽以外の水源水槽の材質等は、次によるものとすること。

- ア 耐火構造の水槽によるものは、防水モルタル等による止水措置が講じられていること。
- イ 鋼板製の水槽によるものは、有効な防食処理を施したものであること。
- ウ FRP製の水槽によるものは、前2の2(2)の例によること。(第2-15図参照)

(外気に面する場所に設ける場合)

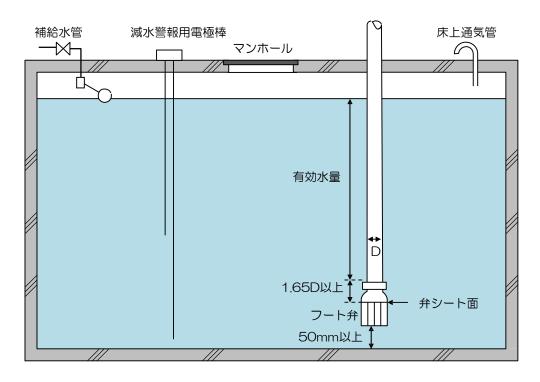


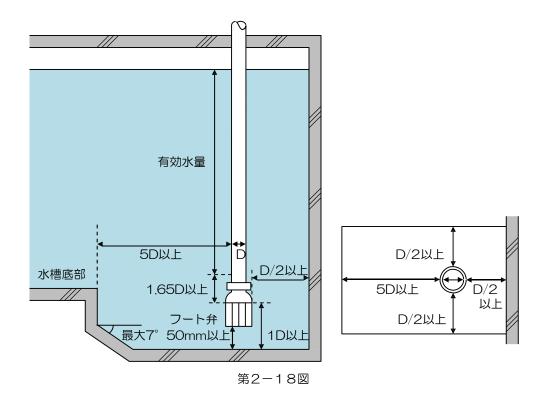

第2-15図

(4) 有効水源水量の確保

ア 床上水槽及び高架水槽方式(建物の中間等に水槽を設けるものを含む。)の水槽貯水槽の送水管の上端上部(送水管内径(D)に1.65を乗じて得た数値の位置)から貯水面までの間とすること。 (第2-16図参照)

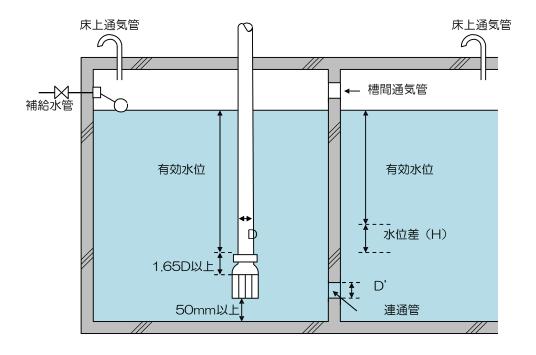
(側面から取り出す場合)




イ 地下水槽

フート弁のシート面の上部(吸水管内径(D)に1.65を乗じて得た数値の位置)から貯水面の間とするほか、次によること。

- (ア) サクションピットを設けない場合は、第2-17図の例によるものであること。
- (イ) サクションピットを設ける場合は、第2-18図の例によるものであること。

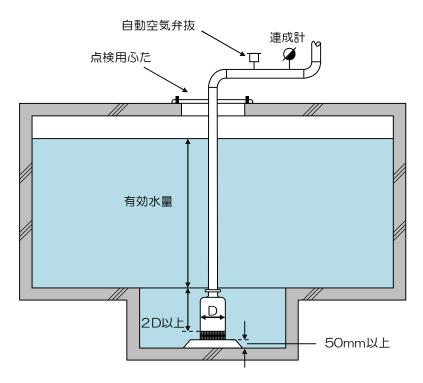


第2-17図

ウ 複数の槽で構成される地下水槽

- (ア) 連通管は、ポンプ吸水管が設けられている槽と他の槽の間に水位差が生じるため、第2-19 図に示す計算式により、水位差又は連通管断面積を求めて有効水量を算定すること。
- (イ) 各水槽には、原則として、床上通気管(水槽と外部との間に設けるもの)又は槽間通気管(槽と槽の間の水面上部に設けるもの)を設けること。

複数の水槽で構成される地下水層の連通管又は水位差の計算式


$$A = \frac{Q}{0.72\sqrt{2\,g\,H}} = \frac{Q}{3.32\sqrt{H}}$$
 又は $D' = 0.62\sqrt{\frac{Q}{H}}$
$$(又は H = \left(\frac{Q}{3.32\times A} \right)^2)$$

$$A : 連通管内断面積 (m²)$$

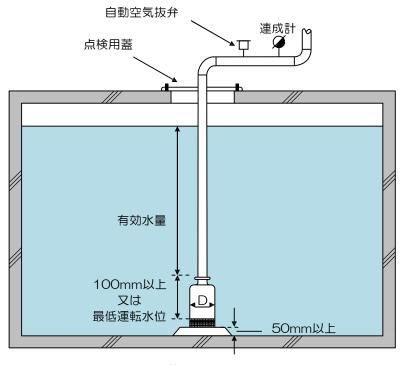
$$D' : 連通管内径 (m)$$

$$Q : 連通管の流量 (m³/S)$$

$$g : 重力の加速度 (9.8m/s²)$$

$$H : 水位差 (m)$$

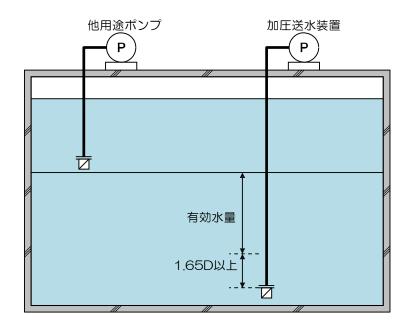
第2-19図


エ 水中ポンプを用いる場合の水槽(第2-20図参照)

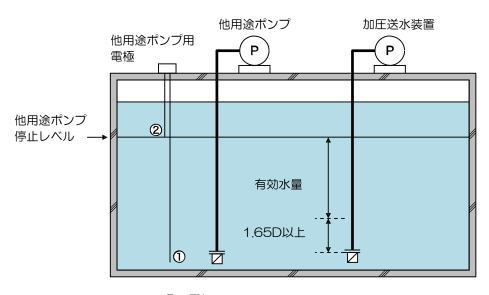
- (ア) サクションピットを設ける場合の有効水量の算定は、ポンプストレーナー上部よりポンプ外径Dの2倍以上の上部から水面までとすること。
- (イ) サクションピットを設けない場合の有効水量の算定は、ポンプストレーナー上部から100 mm以上又は最低運転水位から水面までとすること。

(サクションピットを設ける場合)

(サクションピットを設けない場合)



第2-20図


才 共用水槽 (第2-21 図参照)

他の水槽と併用する場合又は他の消防用設備等の水槽、補助用高架水槽、連結送水管用加圧送水 装置の中間水槽の水源と併用する場合の有効水量は、屋内消火栓設備の有効水源を優先した位置と した取出し配管のレベル差による方法又は水位電極棒の制御による方法によること。

(フート弁のレベル差による方法の例)

(水位電極棒の制御による方法の例)

- ①コモン
- ②他用途ポンプ停止及び減水警報

第2-21図

4 配管等

配管、管継手及びバルブ類(以下この項において「配管等」という。)は、省令第12条第1項第6号の規定によるほか、次によること。

(1) 配管

省令第12条第1項第6号二の規定によるほか、次によること。

- ア 配管の設置場所の使用圧力値(ポンプ方式の場合は締切全揚程時の圧力、高架水槽方式の場合は 背圧により加わる圧力、送水口を設けるものは送水圧力をいう。以下この項において「使用圧力値」 という。)が、1.6MPa以上となる部分に設ける管は、JIS G3 448、JIS G 3454 (Sch40以 上)若しくはJIS G 3459 (Sch10以上)に適合するもの又はこれらと同等以上の強度、耐食性 及び耐熱性を有する配管を使用すること。
- イ 合成樹脂製の管は、認定品とすること。
- ウ 屋外、湿気の多い場所等の露出配管(内外面に亜鉛めっきが施された白管を除く。)には、錆止め塗装等による防食措置を施すこと。
- エ 配管内等の消火水が凍結するおそれのある配管等の部分には、保温材、外装材等により保温ラッキング等の措置を施すこと。
- オ 棟が異なる防火対象物で加圧送水装置を共用する場合で、各棟に至る配管を埋設した場合にあっては、棟ごとに配管を分岐し、止水弁を設け、「常時開」の表示をすること。 (第2-23図参照)

(参考) 管の種類と規格

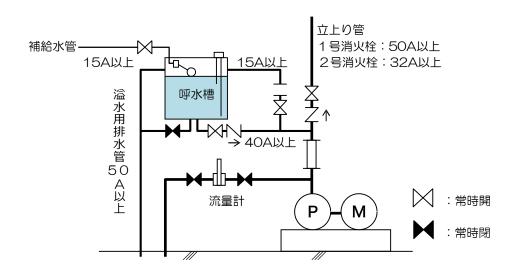
管種	名 称	規格番号	記号	備考
鋼	水配管用亜鉛めっき鋼管	JIS G 3442	SGPW	白管
材	配管用炭素鋼鋼管	JIS G3452	SGP	白管、黒管
	圧力配管用炭素鋼鋼管	JIS G3454	STPG	白管、Sch40、STPG370
ステン	一般配管用ステンレス鋼鋼管	JIS G3448	SUS-TPD	SUS 304
ステンレス材	配管用ステンレス鋼鋼管	JIS G3459	SUS-TP	
			SGP-VS	白管
外面	消火用硬質塩化ビニル外面被覆鋼管	WSP 041	STPG-VS	白管、Sch40
外面被覆鋼管	 - 消火用ポリエチレン外面被覆鋼管		SGP-PS	白管
管	冶入内がフエナレン外面 放復調官	WSP 044	STPG-PS	白管、Sch40
合成植	打脂製の管	_	_	認定品に限る。

(2) 管継手

省令第12条第1項第6号木の規定によるほか、次によること。

- ア 管継手の設置場所の使用圧力値が1.6MPa 以上となる部分に設ける管継手は、フランジ継手にあっては、JISB2239、JISB2220(16K以上)に適合するもの、フランジ継手以外の継手にあってJISB2312、JISB2313(Sch40以上)(材料にJISG3459を用いるものは、Sch10以上)のものに適合するもの又はこれらと同等以上の強度、耐食性及び耐熱性を有する管継手を使用すること。
- イ 省令第12条第1項第6号ホの表に規定する管継手以外の管継手は、認定品とすること。
- ウ 合成樹脂製の管継手は、認定品とすること。
- エ 可とう管継手(配管の伸縮、変位、振動等に対応することを目的として設けるベローズ形管継手、 手、フレキシブル形管継手、ブレード型等をいう。(以下この項において「可とう管継手」という。)) は、認定品とすること。

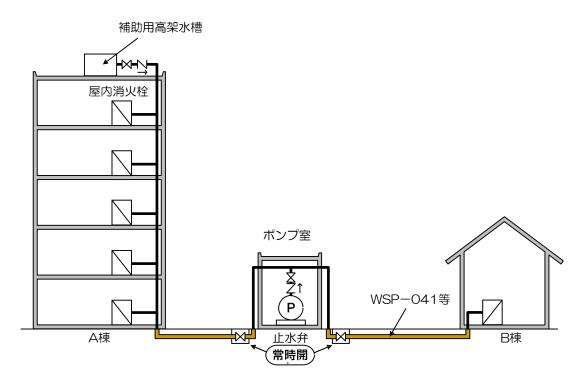
(参考) 管継手の種類と規格


種類	名 称	規格番号	備 考
	鋼製管フランジ	JIS B 2220	ねじ込み式継手、溶接式継手
フランジ継手	鋳鉄製管フランジ	JIS B 2239	ねじ込み式継手
	ねじ込み式可鍛鋳鉄製管手	JIS B 2301	ねじ込み式継手 SGP エルボ、チーズ等
	ねじ込み式鋼管製管継手	JIS B 2302	ねじ込み式継手 SGP ニップル、ソケットのみ
フランジ継手以外の継手	ステンレス鋼製ねじ込み継手	JIS B 2308	ねじ込み式継手 SUS材料にJIS G 3214(圧力容器用ステンレス鋼鍛鋼品)(SUS F304又はSUS F316に限る。)又はJIS G 5121(ステンレス鋼鋳鋼品)(SCS13又はSCS14に限る。)を用いるもの。エルボ、チーズ等
以外の極于	一般配管用ステンレス鋼製突 合せ溶接式管継手	JIS B 2309	溶接式鋼管用継手 SUS エルボ、チーズ等
	一般配管用鋼製突合せ溶接式 管継手	JIS B 2311	溶接式鋼管用継手 SGP エルボ・チーズ等
	配管用鋼製突合せ溶接式管継 手	JIS B 2312	溶接式鋼管用継手 STPG エルボ、チーズ等
	配管用鋼板製突合せ溶接式継 手	JIS B 2313	溶接式鋼管用継手 STPG JIS G 3468 を材料とするものを除く。 エルボ、チーズ等

(3) バルブ類

省令第12条第1項第6号トの規定によるほか、次によること。

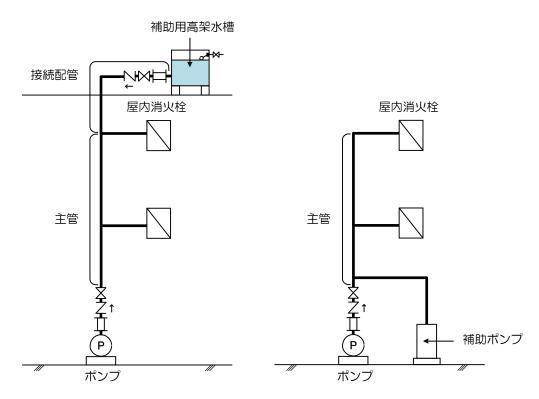
- ア バルブ類は、当該バルブ類の設置場所の使用圧力値以上の圧力値に適用するものを設けること。
- イ 省令第12条第1項第6号ト(イ)に規定する材質以外のバルブ類は、認定品とすること。
- ウ 省令第12条第1項第6号ト(ロ)に規定する開閉弁、止水弁及び逆止弁以外の開閉弁、止水弁及び 逆止弁は、認定品とすること。
- エ バルブ類は、容易に点検できる場所に設け、かつ、当該バルブ類である旨の表示を直近の見易い 位置に設けること。
- オ 開閉弁又は止水弁には、「常時開」又は「常時閉」の表示をすること。(第2-22図参照)


(ポンプ回りのバルブ類の表示例)

第2-22図

(参考) 開閉弁、止水弁及び逆止弁の種類と規格

弁	種	名	規格番号	備 考
		青銅弁	JIS B 2011	10Kねじ込み形、フランジ形
開	仕切弁	ねずみ鋳鉄弁	JIS B 2031	10Kフランジ形
開閉弁、	弁	可鍛鋳鉄 10Kねじ込み形弁	JIS B 2051	
止水弁		青銅弁	JIS B 2011	10Kねじ込み形、フランジ形
弁	玉形弁	ねずみ鋳鉄弁	JIS B 2031	10Kフランジ形
	弁	可鍛鋳鉄 10Kねじ込み形弁	JIS B 2051	
: 11	青銅		JIS B 2011	10Kねじ込み形、フランジ形
逆止弁	青銅弁ねずみ鋳鉄弁		JIS B 2031	10Kフランジ形め弁
71	可鍛銀	铸鉄 10Kねじ込み形弁	JIS B 2051	
上記書	表以外の	の開閉弁、止水弁及び逆止弁	_	認定品に限る。

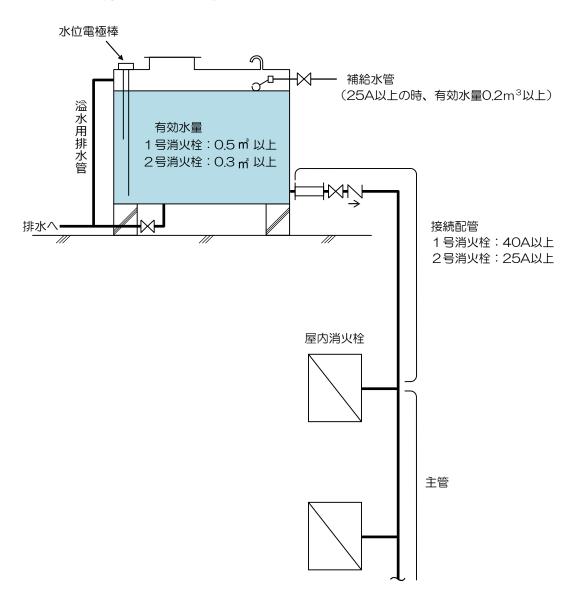

第2-23図

(4) 配管内の充水

ポンプ方式の配管内には、速やかな放水及び配管の腐食防止等のため、次の補助用高架水槽等により常時充水しておくこと。(第2-24図参照)

(補助用高架水槽による場合)

(補助ポンプによる場合)

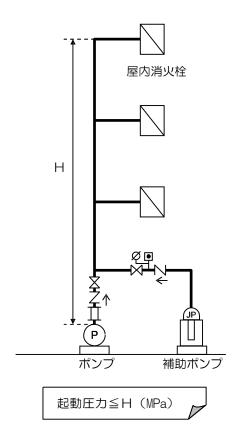


第2-24図

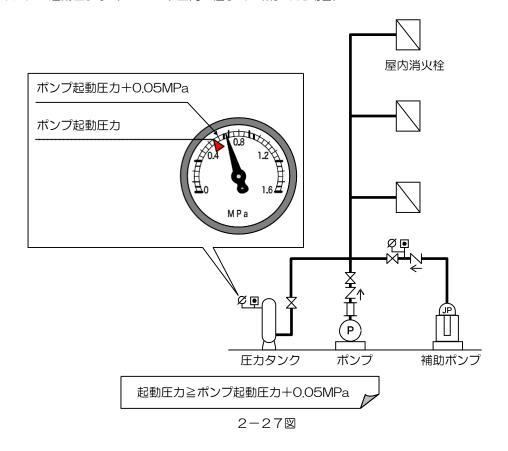
- ア 補助用高架水槽による場合は、次によること。(第2-25図参照)
- (ア) 補助用高架水槽から主管までの配管は、政令第11条第3項第1号に規定する消火栓(以下この項において「1号消火栓」という。)が設けられるものは呼び径40A以上、政令第11条第3項第2号に規定する消火栓(以下この項において「2号消火栓」という。)が設けられるものは呼び径25A以上のものとすること。
- (イ) 補助用高架水槽の機器は、前2の2(2)の例によるものとすること。
- (ウ) 補助用高架水槽の有効水量は、1号消火栓が設けられるものは0.5m³以上、2号消火栓が設けられるものは0.3m³以上とすること。

なお、当該水槽の水位が低下した場合に、呼び径25A以上の配管により自動的に給水できる 装置を設けた場合には、当該有効水量を0.2m³以上とすることができる。

- (エ) 前(ウ)の規定にかかわらず、減水した場合、自動的に補水できる装置又は9表示及び警報の例により警報を発する装置を設けること。
- (オ) 補助用高架水槽を他の消防用設備等と兼用する場合の容量は、それぞれの設備の規定水量のうち最大以上の量とすることができる。
- (力) 補助用高架水槽と接続する配管には、可とう管継手、止水弁及び逆止弁を設けること。

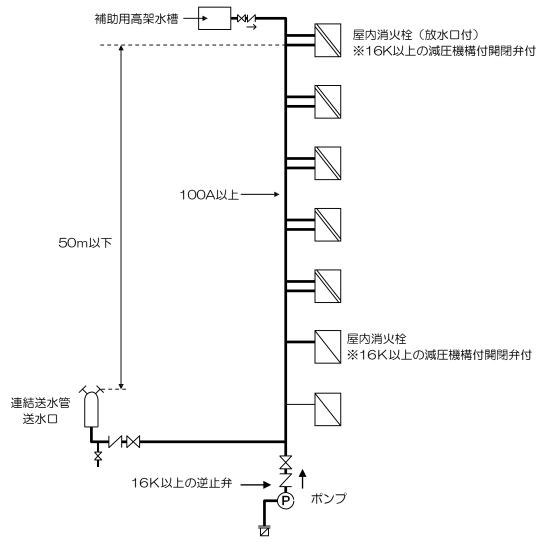

第2-25図

- イ 配管充水用の補助ポンプ(以下この項において「補助ポンプ」という。)による場合は、次のすべてに適合すること。(第2-26図参照)
- (ア) 専用の補助ポンプを設けること。
- (イ) 他の消防用設備等と兼用又は併用しないものであること。
- (ウ) 水源は、呼水槽と兼用しないもので、かつ、自動給水装置を設けてあること。
- (エ) 主管への接続は、屋内消火栓設備用ポンプ直近の止水弁の二次側配管とし、当該接続配管に止水弁及び逆止弁を設けること。
- (オ) 補助ポンプが作動中に屋内消火栓設備を使用した場合において、屋内消火栓の放水に支障がないこと。
- (力) 吐出量は、必要最小限の容量とし、おおむね20½/min以下とすること。
- (キ) 起動圧力の設定は、補助ポンプ部分の配管内の圧力が次のa又はbの時に確実に自動起動し、 停止圧力に達した時に確実に自動的に停止するものであること。(第2-27図参照)
 - a 最も高い位置にある屋内消火栓開閉弁から屋内消火栓設備用ポンプまでの落差圧まで減少 した時
 - b 屋内消火栓設備用ポンプの起動圧より0.05MPa以上高い値までに減少した時
- (ク) 締切圧力が屋内消火栓設備用ポンプの締切揚程より大きい場合は、安全弁等により圧力上昇を制限できるものとし、屋内消火栓設備に支障を及ぼさないこと。



第2-26図

(最も高い位置にある屋内消火栓開閉弁からポンプまでの落差圧まで減少した場合)


(ポンプの起動圧より0.05MPa以上高い値までに減少した場合)

(5) 連結送水管用主管との配管兼用(第2-28図参照)

省令第12条第1項第6号イただし書きの規定により、連結送水管の主管と屋内消火栓設備の配管を兼用(以下この項において「連結送水管主管兼用」という。)する場合は、次によること。

- ア 連結送水管主管兼用ができる防火対象物は、次のすべてを満たすこと。
- (ア) 当該防火対象物の最上部に設置された連結送水管の放水口の高さが、地盤面からの高さが 50m以下であること。
- (イ) 棟が異なる防火対象物と屋内消火栓設備の加圧送水装置を共用していないこと。
- (ウ) 中継ポンプを用いないポンプ方式であること。
- イ 主管は、呼び径100A以上とすること。
- ウ 連結送水管の設計送水圧力が1.0MPaを超えるものは、省令第31条第5号イから二までに規定する配管等とし、屋内消火栓設備のポンプ二次側には、呼び圧力16K以上の逆止弁を設けポンプに直接送水圧力がかからないこと。
- エ 屋内消火栓の開閉弁には、連結送水管に消防隊が送水した際に屋内消火栓の放水圧力がO.7MPa を超えないための措置として、呼び圧力16K以上の減圧機構付開閉弁又は減圧弁等を設けること。 なお、易操作性1号消火栓を使用する場合は、使用圧1.6MPa以上の受託評価品を使用すること。

第2-28図

5 配管等の摩擦損失計算

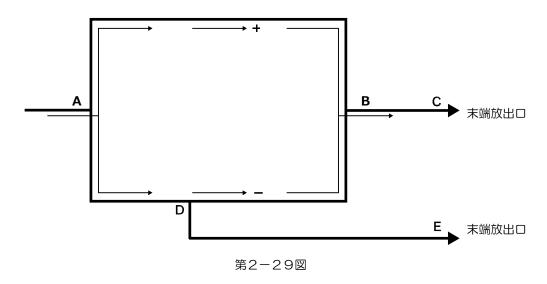
配管の摩擦損失計算は、「配管の摩擦損失計算の基準」(平成20年12月消防庁告示第32号)によるほか、次によること。

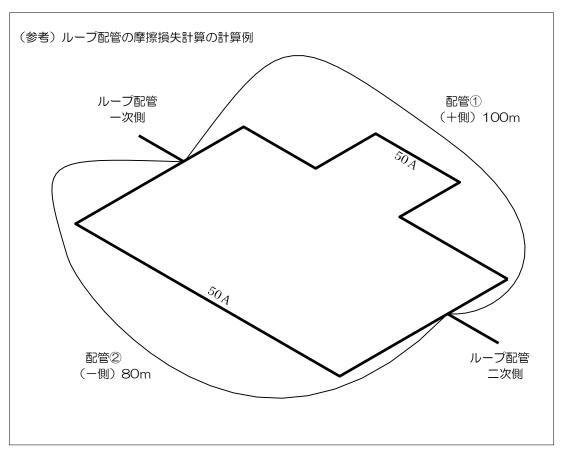
(1) 金属製の管継手として、JISB2309を当該管継手として用いる場合、摩擦損失の計算に使用する等価管長の値については、第2-2表を用いること。

第2-2表

<u>カ</u> ィ	2一2衣													
種別	大きさの呼び種別			32	40	50	65	80	100	125	150	200	250	300
	45°	ショート	0.4	0.5	0.5	0.7	0.9	1.1	1.3	1.6	2.0	2.5	3.1	3.8
	エルボ	ロング	0.3	0.4	0.4	0.5	0.7	0.8	1.1	1.2	1.4	1.8	2.4	2.9
溶接式	90°	ショート	0.8	0.9	1.1	1.4	1.7	2.1	2.6	3.3	3.8	5.1	6.3	7.4
	エルボ	ロング	0.6	0.8	0.8	1.1	1.3	1.6	2.0	2.5	2.9	3.8	4.7	5.6
	チーズ又はクロス (分流 90°)		2.1	2.7	3.1	3.9	5.0	5.7	7.4	9.1	10.7	14.2	17.6	21.0

(単位:m)


- (2) 2本の配管をリング状に結合する(以下この項において「ループ配管」という。)場合、次によること。
 - ア 摩擦損失計算については、次の手順によること。
 - (ア) ループ配管の流入部側分岐点を設定するとともに、当該分岐点から最遠となる流出部側合流点を設定する。
 - (イ) ループ配管に流れる流量を仮想値で設定し、「配管の摩擦損失計算の基準」第2に規定される配管の摩擦損失計算に基づき、仮想摩擦損失水頭を計算する。
 - (ウ) 流水の摩擦損失は、配管長さに比例し、流量の1.85乗に正比例することから、ループ配管でで圧力の不均衡が生じた場合の修正流量(q)を求め、(イ)で仮想した流量及び仮想摩擦損失水頭の値を用いて、修正流量を求める。


- (エ) (イ)で設定した仮想流量及び(か)で求めた修正流量を踏まえ、再度ループ配管に流れる流量を設定し、ループ配管の流出部側合流点における摩擦損失水頭の数値の合計(絶対値)が0.05m 未満となるまで(ウ)の計算を繰り返し、配管の摩擦損失水頭を求める。
- (オ) ループ配管から末端の放出口までの配管の摩擦損失水頭を含めた合計摩擦損失が最大となる 部分を、配管の摩擦損失水頭の最大値とすること。
- イ ループ配管の口径について

将来的にループ部からの配管の増設等の可能性がある場合には、ループ配管部の口径の大きさに余裕をもたせること。

ウ 上記アの例については、ループ部分の配管の摩擦損失水頭を求めているが、ループ配管から末端 の放出口までの配管の摩擦損失水頭を含めた合計摩擦損失が最大となる部分が配管の摩擦損失水頭 の最大値となること。

第2-29図の例のように配管口径及び材質が全て同じ場合は、ループ部分のみから判断すと摩擦損失水頭はA-B間の方がA-D間より大きいが、D-E間の摩擦損失水頭とB-C間の摩擦損失水頭との差は、A-B間の摩擦損失水頭とA-D間の摩擦損失水頭との差より大きいため、合計損失ではA-B-C間よりA-D-E間の方が大きくなり、最遠部はEで最大の摩擦損失水頭はA-D-E間となる。

1 配管①及び②に流れる仮想流量を500ℓ/minと想定した場合の配管の摩擦損失水頭(H 単 位:m)を求める。

							管継手	= (ねじ2	込み式)							
区間	管の	管径(A)	仮想流量	直管長	90°	エルボ	チー	·ズ分流								
	種類	(基準内径cm)	(/min)	巨官女	個数	相当長	個数	相当長	直管相当長							
					回奴	計	回奴	計	(m)							
配管①	JIS G	50	500	100	6	1.6	1	3.2	12.8							
(十側)	3452	(5.29)	300	300	300	300	550	550	000	300	100	0	9.6	1	3.2	12.0
配管②	JIS G	50	500	90	2	1.6	4	3.2								
(一側)	3452	(5.29)	500	80	2	3.2	'	3.2	6.4							

I'k:直管の長さ(m)

I" k: 管継手の直管相当の長さ(m)

配管① (十側)

$$H = 1.2 \frac{500^{1.85}}{5.29^{4.87}} \left[\frac{100+12.8}{100} \right] = 39.936$$

配管②(一側)

$$H = 1.2 \frac{500^{1.85}}{5.29^{4.87}} \left[\frac{80 + 6.4}{100} \right] = 30.589$$

仮想摩擦損失水頭 : 配管①(+側)39.936m 、 配管②(-側)-30.589m

2 仮想流量(500/min)に対する修正流量(q 単位: /min)を求める。

$$q = \frac{39.936 + (-30.589)}{1.85 \times 39.936} + \frac{1.85 \times 30.589}{500} = 35.820$$

+側では仮想流量 500ℓ /minに対し、 35.82ℓ /min 多く 一側では仮想流量 500ℓ /minに対し、 35.82ℓ /min 少ないということとなる。

- 3 十側と一側の仮想流量(500 ℓ /min)に修正流量(35.820 ℓ /min)を考慮し、新たな仮想流量を十側464.180 ℓ /min、一側535.820 ℓ /minとして、再度計算する。
- ※ これを繰り返して、+側及び-側の摩擦損失水頭の数値の合計(絶対値)がO.O5未満になるまで計算する。

							管継手	(ねじ込み	.式)
区間	管の	管径(A)	仮想流量	直管長	90° :	エルボ	チー	ズ分流	
	種類	(基準内径cm)	(ℓ/min)	EEX		相当長		相当長	直管相当長
					個数	計	個数	計	(m)
配管①	JIS G	50				1.6		3.2	
(十側)		(5.29)	464.180	100	6	9.6	1	3.2	12.8
	3452								
配管②	JIS G	50				1.6		3.2	
(一側)	3452	(5.29)	535,820	80	2	3.2	1	3.2	6.4

(1) 配管①及び②に流れる仮想流量(+側464.180 ℓ /min、-側535.820 ℓ /min)の配管摩擦損失水頭(H 単位:m)を求める。

配管① (+側)

$$H = 1.2 \frac{464.180^{1.85}}{5.29^{4.87}} \left[\frac{100+12.8}{100} \right] = 34.805$$

配管②(一側)

$$H = 1.2 \frac{535.820^{1.85}}{5.29^{4.87}} \left[\frac{80+6.4}{100} \right] = 34.766$$

仮想摩擦損失水頭 : 配管①(+側)34.805m 、 配管②(-側)-34.766m

(2) +側と-側の摩擦損失水頭の数値の合計が0.05以上のため、仮想流量(+側 $464.180 \ell/min$ 、-側 $535.820 \ell/min$)に対する修正流量(q) 単位: ℓ/min)を求める。

$$q = \frac{34.805 + (-34.766)}{1.85 \times 34.805} + \frac{1.85 \times 34.766}{464.180} = 0.151$$

+側では仮想流量464.180ℓ/minに対し、0.151ℓ/min 多く

一側では仮想流量535.820 ℓ /minに対し、0.151 ℓ /min 少ないということとなる。

(3) +側と-側の仮想流量(+側464.180 ℓ /min、-側535.820 ℓ /min)に修正流量(0.151 ℓ /min)を考慮し、新たな仮想流量を+側464.029 ℓ /min、-側535.971 ℓ /minとして、再度計算する。

	管の種類		仮想流量	±05.5	管継手(ねじ込み式)				
区間		管径(A)			90° エルボ		チーズ分流		
		(基準内径cm)	(/min)	直管長		相当長		相当長	直管相当長
					個数	計	個数	計	(m)
配管①	JIS G	50	101000	400		1.6		3.2	400
(十側)	3452	(5.29)	464.029	100	6	9.6	1	3.2	12.8
配管②	JIS G	50	505.074			1.6		3.2	0.4
(一側)	3452	(5.29)	535.971	80	2	3.2	1	3.2	6.4

配管①(+側)

$$H = 1.2 \frac{464.029^{1.85}}{5.29^{4.87}} \left[\frac{100+12.8}{100} \right] = 34.784$$

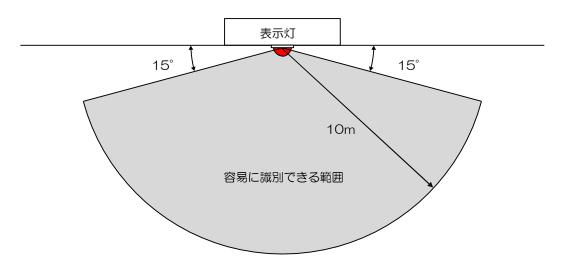
配管②(一側)

$$H = 1.2 \frac{535.971^{1.85}}{5.29^{4.87}} \left[\frac{80+6.4}{100} \right] = 34.784$$

仮想摩擦損失水頭 : 配管① (+側) 34.784m 、 配管② (-側) -34.784m

+側及び-側の摩擦損失の合計 : 34.784+(-34.784)=0.00

-0.05<0.00<0.05


4 +側と-側の摩擦損失水頭の合計の絶対値が0.05未満となった数値(34.78m)が当該ループ配管における配管摩擦損失水頭となる。

6 消火栓箱等

政令第11条第3項第1号イ及びロ、第2号イ及びロ並びに省令第12条第1項第1号から第3号までの規定によるほか、次によること。

なお、屋内消火栓は、努めて易操作性1号消火栓(1号消火栓を設置している既存の防火対象物の増築、改修を含む。)又は2号消火栓を設置すること。

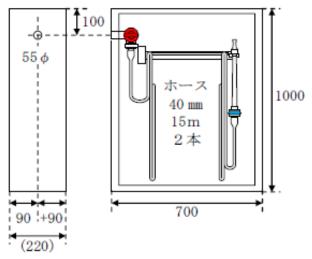
(1) 省令第12条第1項第3号ロ又は同号ハ(イ)に規定する「取付け面と15以上の角度となる方向に沿って10m離れたところから容易に識別できる赤色の灯火」は第2-30図の例によること。

第2-30図

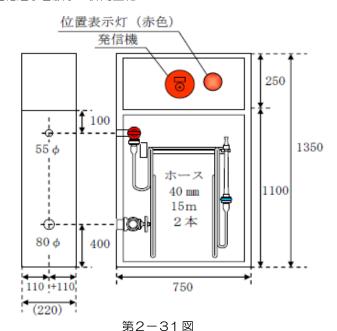
(2) 1号消火栓(易操作性1号消火栓を除く。)は、次によること。(第2-31図参照)

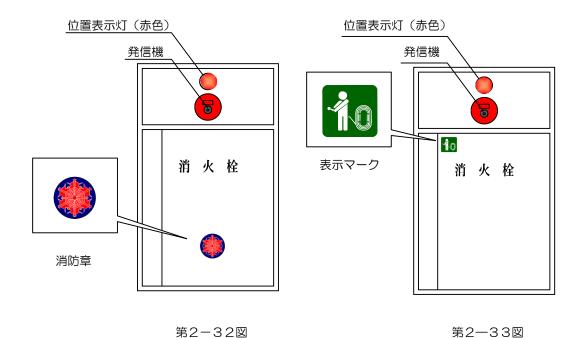
ア 消火栓箱の構造

- (ア) 消火栓箱の扉は、容易に開閉できるものであること。
- (イ) 消火栓箱の材質は、鋼製とし、厚さは1.6mm以上のものとすること。この場合、外面の仕上げに難燃材のものをはることができる。
- (ウ) 消火栓箱の奥行は、弁の操作、ホースの収納等に十分な余裕を有するものとすること。
- イ 消火栓開閉弁は、認定品であること。
- ウ 管そうは、受託評価品であること。
- エーノズルは、開閉装置付のものを設けること。

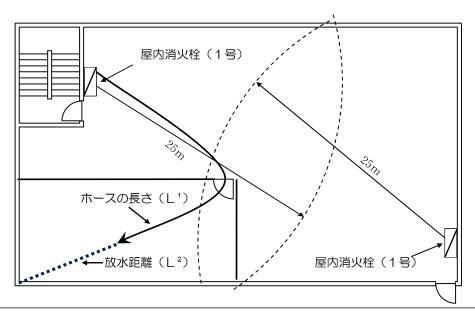

なお、ノズルは、受託評価品であること。この場合、スムースノズルを使用する場合も同様とする こと。

- オ ホースは、呼称40のもので、長さは、屋内消火栓から階の各部分に消火用ホースを延長し、ノズ ルからの放水射程7m以内で放水した場合に有効に放水できる長さとすること。この場合のホース の全長は、操作性を考慮して務めて30m以下とすること。
- カ 灯火及び表示は、次によること。
 - (ア) 消火栓箱に表示する「消火栓」の文字の大きさは、1字につき20cm²以上とすること。
 - (イ) 消火栓の赤色の灯火は、消火栓箱の上部に設けること。ただし、消火栓箱の扉表面の上端部に設ける場合はこの限りでない。
 - (ウ) 消火栓の赤色の灯火の有効投影面積は、直径60mm以上又はこれに相当する面積以上とすること
 - (エ) 連結送水管の放水口を併設して収納する消火栓箱の表面には、前(ア)から(ウ)までによるほか、直径10cm以上の消防章又は1字につき20cm²以上の文字の大きさで「放水口」と表示すること。(第2-32図参照)

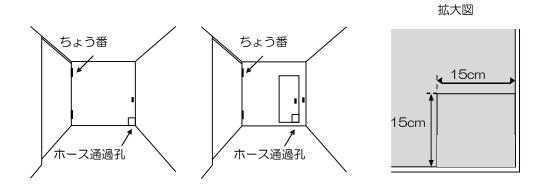

- キ 消火栓箱内に起動装置を設ける場合は、当該起動装置が容易に視認でき、かつ、操作し易い位置とすること。
- (3) 易操作性1号消火栓、2号消火栓及び広範囲2号消火栓は、次によること。
 - ア機器は、受託評価品であること。
 - イ 消火栓箱内に連結送水管を併設する場合には、受託評価品であること。
 - ウ 連結送水管と併設できるものは、前(2)カ(エ)によること。
 - エ ホースの呼称及び長さは、評価時のものとし、消火栓箱は階の各部分に消火用ホースを延長し、 ノズルからの放水射程(易操作性1号消火栓及び広範囲2号消火栓にあっては7m、2号消火栓に あっては10m)以内で放水した場合に有効に放水できるように配置すること。
 - オ 消火栓の扉を開けなくても「1人で操作可能な消火栓」であることが容易に確認できる表示マークを消火栓扉の見やすい位置に貼付すること。(第2-33 図参照)

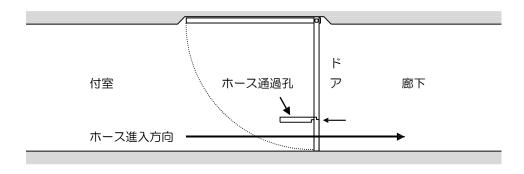

(1号消火栓箱の構造例)

① 屋内消火栓箱

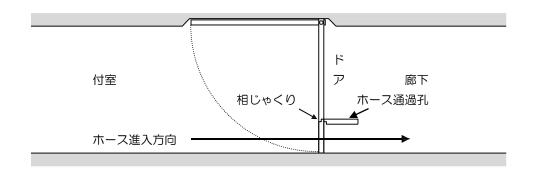

② 屋内消火栓、連結送水管放水口併用型箱

(4) 設置方法


- ア 1号消火栓、2号消火栓等は、原則として同一防火対象物には同一操作性のものを設置すること。 なお、政令第11条第3項第1号に規定する防火対象物以外のもので、可燃性物品を多量に貯蔵 又は取り扱う防火対象物に設ける場合は、努めて1号消火栓(易操作性1号消火栓を含む。)とす ること。
- イ 階の出入口又は階段に近く、火災の際容易に操作ができる位置に設けること。 (第2-34図参照)
- ウ 扉の開閉が容易で、ホース等が避難の障害とならないように設けること。
- エ 間仕切り壁等により未警戒部分が生じないよう、前(2)才及び(3)工の放水距離を考慮し、 包含範囲内の各部分に有効に放水することができるように設けること。

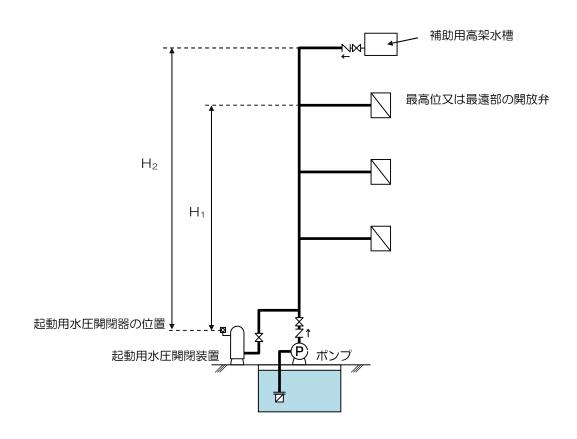

防火対象物の各部分からホース接続口まで、 L^1+L^2 以下となるように設けること。

第2-34図


- エ 非常用エレベーター乗降ロビー及び特別避難階段の付室に屋内消火栓を設置する場合は、乗降ロビー等から屋内に通じる出入口の防火戸の下方には、次により消防用ホース通過孔を設けること。 (第2-35図参照)
 - (ア) 位置はちょう番の反対側下部とすること。
 - (イ) 幅及び高さは、それぞれ、おおむね15cmとすること。
 - (ウ) 消防用ホース通過孔の部分は手動で開閉できるものとし、常時閉鎖状態が保持でき、かつ、防火戸の枠又は他の防火設備と接する部分は、相じゃくり、定規縁又は戸当りを設ける等閉鎖した際にすき間が生じない構造とし、防火設備の取付金物は、取付部分が閉鎖した際に露出しないように取り付ける構造とすること。

扉の開く方向にホース通過孔が開く場合

扉の開く方向と反対方向にホース通過孔が開く場合


第2-35図

- (5) 1住戸2階層以上で構成される共同住宅の住戸で、共用廊下等がなく、屋内消火栓を階ごとに設けることが適当でないと認められるものにあっては、当該出入口がある階に設ける屋内消火栓のホース延長により、有効に消火できる場合、政令32条の規定を適用して、出入口のない階に屋内消火栓を設けないことができる。◆
- (6) 冷凍倉庫等の消火栓箱にあっては、当該出入口がある階に設ける屋内消火栓のホース延長により 有効に放水することができる場合、政令第32条を適用して消火栓箱を設けないことができる。◆

7 起動装置

起動装置は、省令第12条第1項第7号への規定によるほか、配管内における圧力の低下を検知し、ポンプを自動的に起動させるものは、次による場合にできること。(第2-36図参照)

- (1) 起動用水圧開閉装置は、「加圧送水装置の基準」(平成9年6月消防庁告示第8号)第6第5号 に適合するものを設けること。
- (2) 起動用水圧開閉装置の起動用水圧開閉器の設定圧力は、当該起動用水圧開閉器の位置における配管内の圧力が、次のア又はイのいずれか大きい方の圧力値に低下するまでに、起動するように調整されたものであること。
 - ア 最高位又は最遠部の消火栓の開閉弁の位置から起動用水圧開閉器までの落差(H₁)による圧力に第2-3表の数値を加えた場合
 - イ 補助用高架水槽の位置から起動用水圧開閉器までの落差(H₂)による圧力にO.O5MPaを加え た場合

第2-36図

第2-3表

消火栓	数值
1号消火栓	$H_1 + 0.2 \text{ (MPa)}$
易操作性1号消火栓	$H_0+H_1+0.2$ (MPa)
2号消火栓	$H_0+H_1+0.3$ (MPa)

※Hは、易操作性1号消火栓及び2号消火栓の弁、ホース、ノズル等の摩擦損失として機器仕様書に明示された数値をいう。

8 屋上放水口

屋上に屋内消火栓の試験放水及び自衛消防隊等の行う放水訓練の利便を図るなどのために設置する放水口(以下この項において「屋上放水口」という。)は、次によること。

- (1) 結合金具は差込式のものとし、その構造は、「消防用ホースに使用する差込式の結合金具の技術上の規格を定める省令」(平成4年1月自治省令第2号)第5条に規定する差し口に適合するものを屋上の形態に応じて1以上設けること。
- (2) 易操作性1号消火栓又は2号消火栓を設ける防火対象物の屋上放水口には、努めて当該消火栓一式を設置すること。

ただし、当該消火栓のリール等が容易に着脱可能な形式のものは、当該リールを着脱できる媒介金 具及び止水栓を設けることで足りる。

9 表示及び警報

表示及び警報は、省令第12条第1項第3号の21の規定によるほか、次によること。 (省令第12条第1項第8号の規定により総合操作盤が設けられている防火対象物を除く。)

- (1) 次の表示及び警報(ベル、ブザー等)は、省令第12条第1項第8号に規定する防災センター等(以下この項において「防災センター等」という。)にできるものであること。
 - ア 加圧送水装置の作動の状態表示(ポンプ等の起動、停止等の運転状況)
 - イ 呼水槽の減水状態の表示及び警報(呼水槽に設けた当該水槽の有効水量が2分の1に減水した際 に警報を発する減水警報装置によるもの)
 - ウ 水源水槽又は補助用高架水槽の減水状態の表示及び警報(水源水槽又は補助用高架水槽に減水警報装置を設けた場合に限る。)
- (2) 次の表示及び警報(ベル、ブザー等)は、防火対象物の規模、用途等に応じて防災センター等にできるものであること。
 - ア 加圧送水装置の電源断の状態表示及び警報
 - イ 連動断の状態表示(自動火災報知設備等の作動と連動するものに限る。)

10 貯水槽等の耐震措置

省令第12条第1項第9号の規定による貯水槽等の耐震措置は、次によること。

(1) 貯水槽

貯水槽は、地震による震動等により破壊、移動、転倒等を生じないように、固定金具、アンカーボルト等で壁、床、はり等に堅固に固定すること。

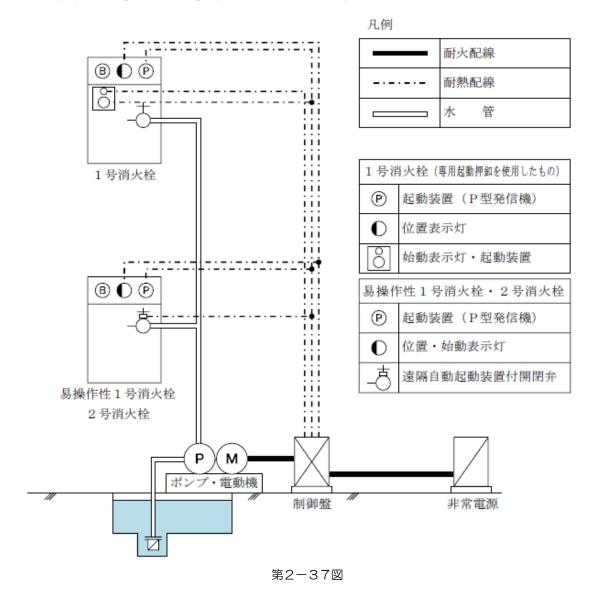
(2) 加圧送水装置

加圧送水装置の吸込管側(床上の貯水槽から接続される管又は横引き部分が長い管の場合に限る。)、

吐出側及び補助用高架水槽には、可とう管継手を設けること。この場合の可とう管継手の強度、長さ等は、変位量に対応できるものとすること。

11 非常電源、配線等

非常電源、配線等は、省令第12条第1項第4号市及び第5号の規定によるほか、次によること。


(1) 非常電源等

非常電源、非常電源回路の配線等は、第24 非常電源によること。

(2) 常用電源回路の配線

常用電源回路の配線は、電気工作物に係る法令によるほか、次によること。

- ア 低圧のものにあっては、引込み開閉器の直後から分岐し、専用配線とすること。
- イ 特別高圧又は高圧による受電のものにあっては、変圧器二次側に設けた配電盤から分岐し、専用 配線とすること。
- (3) 非常電源回路及び操作回路の配線は、第2-37図の例によること。

12 総合操作盤

省令第12条第1項第8号に規定する総合操作盤は、第24 総合操作盤による。